EPFL

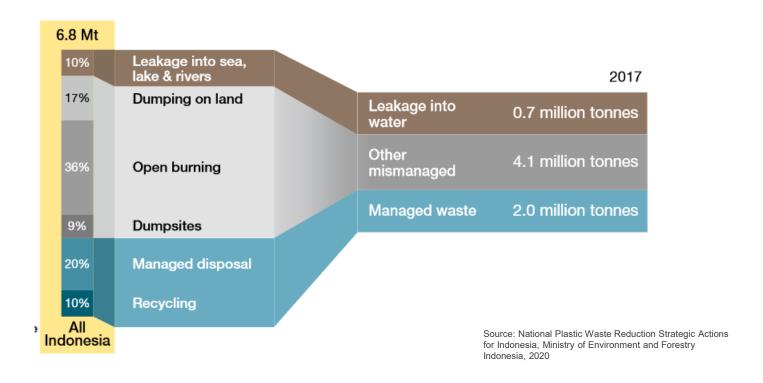
 Laboratory on Human-Environment Relations in Urban Systems

PhD theme

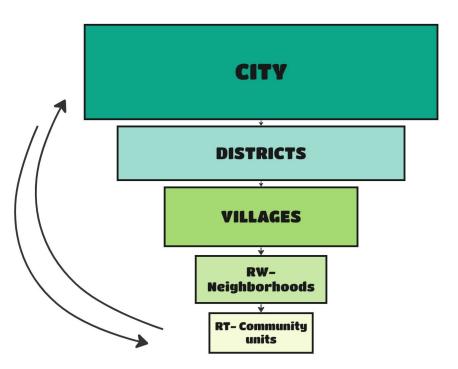
With an ever-increasing population and growing consumption, plastic waste generation has become one of the most challenging problems

Global South

Why Indonesia:


- Serious garbage problem
- Environmental and social impact
- → urban sprawl, informal settlements and unequal access to facilities

Comprehensive data on plastic waste flow is missing



At the national scale...

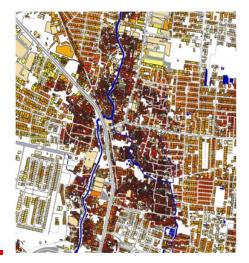
EPFL Why it is difficult to understand the flow of plastic waste

1. City structure

RW: Rukun Warga RT: Rukun Tetangga

2. Informal sector

Economic activities that are invisible to official statistics and research (Hart 1973)


Source: The Jakarta Post 2021

EPFL 3. Different urban landscapes

 Growing population in cities → urban sprawl, informal settlements and unequal access to facilities (recycling, waste banks, TPS)

(Jones 2017)

Disposal choices, consumption and collection systems:

1. Spatial features

reflect power dynamics and inequalities (Onu, Surendran, and Price 2014)

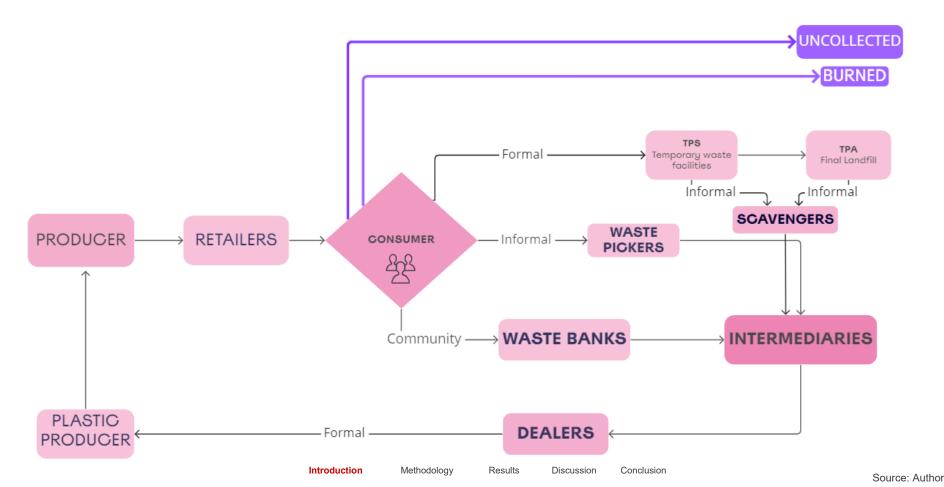
2. Socioeconomic factors

influence consumption patterns and behaviour (Bandara et al 2007)

Neighborhoods in Bandung (ID). Red represents slums, while yellow planned RTs

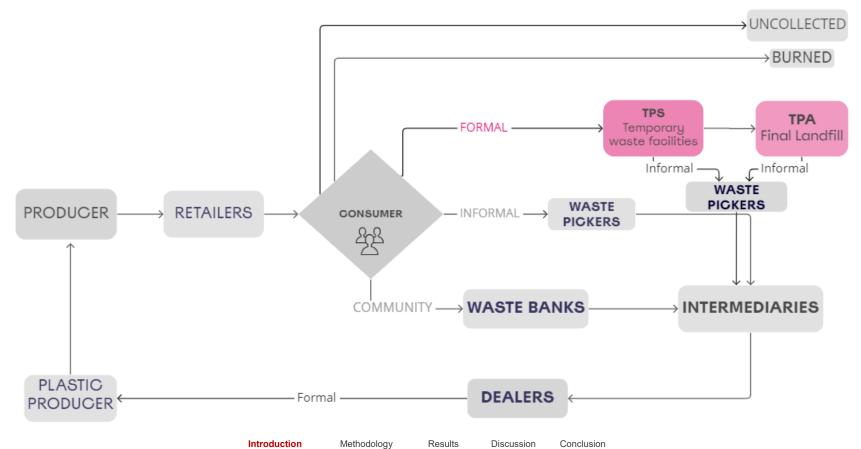
Source: Author

Unequal access:


Introduction

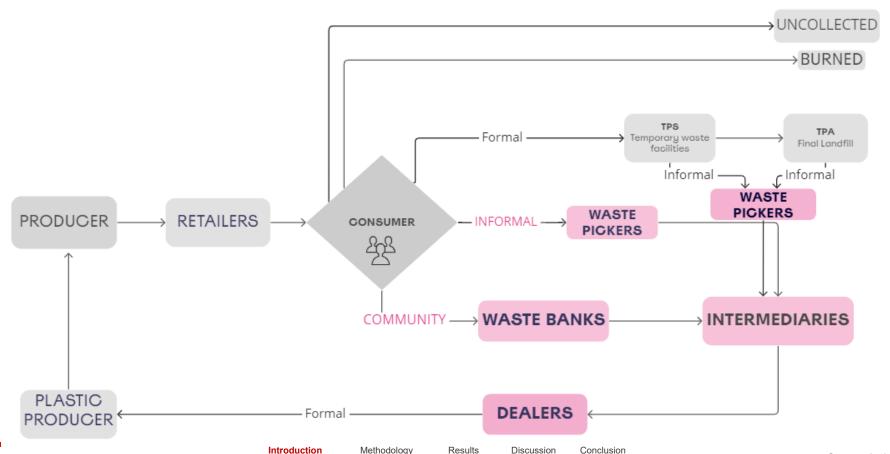
Methodology

Results


Discussion

Stakeholders and formal-informal interaction

7

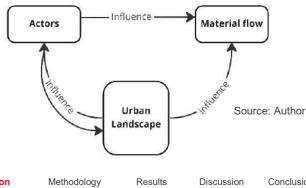

EPFL Stakeholders and formal-informal interaction

Source: Author

Stakeholders and formal-informal interaction

Source: Author

..How would you build an MFA in the absence of data?

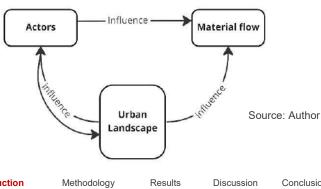

..How does plastic waste flow in different neighbourhoods?

Overcoming the "black box" approach of urban metabolism

Cities are complex systems, in which social, economic, environmental, infrastructural and material processes are intertwined and coexist in a particular space.

Introduction

Overcoming the "black box" approach of urban metabolism


Landscape Ecology

- spatial heterogeneity
- Cities as "patchy" ecosystems

(Turner and Gardner 2015)

Industrial Ecology and **Urban Metabolism**

Quantification of flows within a system

Introduction

 Develop a bottom-up, geo-referenced Material Flow Analysis (MFA) to determine plastic waste flow at the neighbourhood level

How do <u>sociodemographic</u> factors influence the flow of plastic waste?

How do local governance affect plastic waste flow?

Where are the <u>hotspots</u> of uncollected waste?

Research question

Is there a significant difference in how plastic waste flows in different urban neighbourhoods?

Sub-District

Sukasari

Antapani

Cicendo

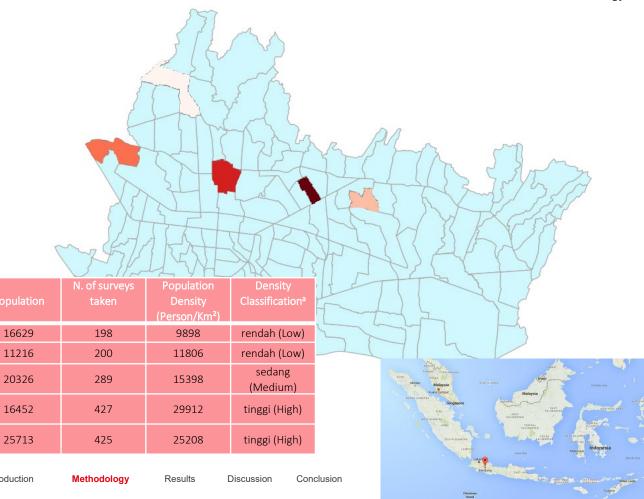
Cibeunying

Kidul Bandung

Wetan

Case study

Bandung City, East Java Island, Indonesia


Gegerkalong

Antapani Kulon

Sukaraja

Cicadas

Tamansari

Introduction

Total villages

8

8

10

15

20

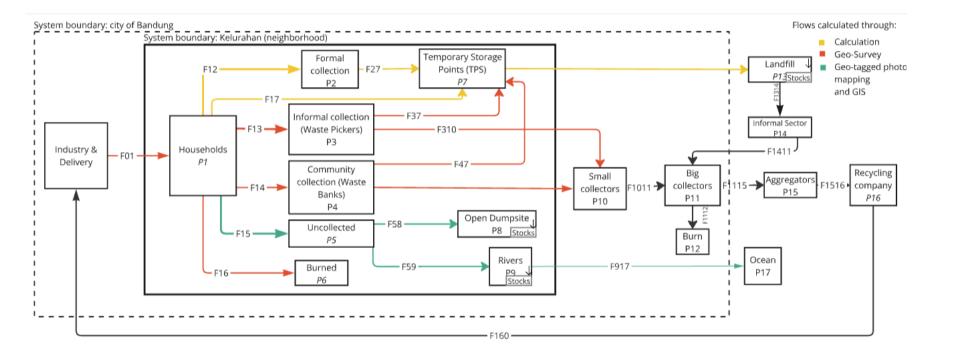
Methods

Geo-survey

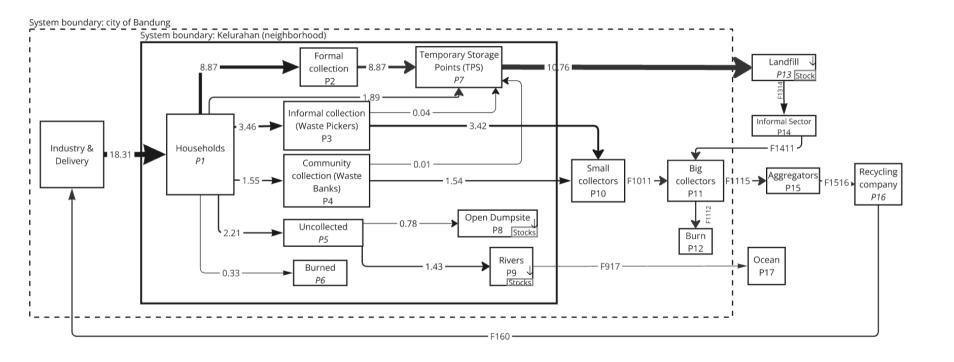
- (1) socioeconomic characteristics (household type and size, income, education level)
- (2) plastic consumption (e.g., quantity, frequency and type)
- (3) segregation (category and frequency)
- (4) disposal choices (e.g., burning, dumping, segregation)
- (5) uncollected wastes observed
- (6) psychological aspects related to consumption and disposal choices

Geotagged photo mapping

- (1) Quantify the amount of uncollected waste and identify its locations
- (2) Mobile app to geotag and photograph observed uncollected waste



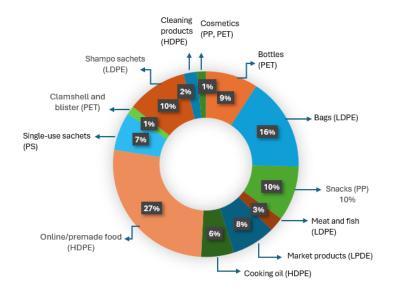
- GIS analysis for uncollected waste
- Material Flow Analysis
- Statistical analysis

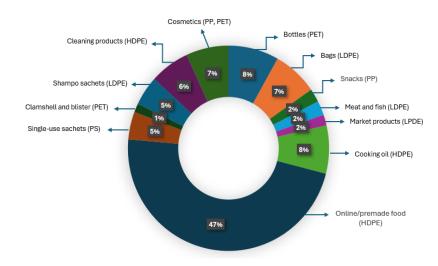


EPFL Results

Plastic flow analysis in kg per capita per year (2023)

Introduction


Methodology


Results

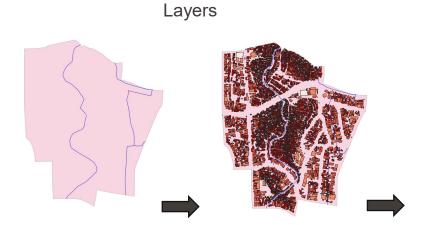
Discussion

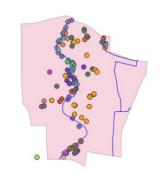
Plastic polymers

Number of products

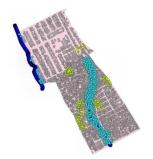
Weight of products

Uncollected waste

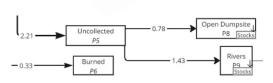

Uncollected waste points



Buffer area (30m)



Neighbourhood	Buildings near the river	Buildings near dumpsites			
1	513	229			
2	1133	665			
3	446	183			
4	514	129			
5	705	563			
Total					
28519 (100%)	3311 (11%)	1769 (6%)			



Introduction

Methodology

Results

Discussion

Differences across neighbourhoods

EDEI	Difference				
Dep. Variable	Nª.	Mean (SD)	Deviation Contrast (B)	P-value	
Consumption	1	17,62 (13,52)	-,171	,753	
Flow: F01	2	20,67 (10,22)	2,9	<.001	
Mean: 18,31 (SD 11,92)	3	13,98 (12,96)	-3,81	<.001	
(3D 11,32)	4	19,72 (10,25)	1,92	<.002	
	5	16,95 (11,92)	-,84	,240	
Segregated waste	1	6,04 (11,45)	1,293	,004	
	2	4,65 (9,43)	-,092	,838	
Flow: F13, F14	3	3,38 (8,35)	-1,365	,022	
Mean: 4,96	4	5,37 (9,53)	,623	,226	
(SD: 9,74)	5	4,29 (7,52)	-,459	,439	
Burned waste	1	0,6 (,76)	-,29	,075	
Flow: F16	2	,46 (4,2)	,113	,49	
Mean: ,33	3	,84 (4,28)	,487	,026	
(SD: 3,56)	4	,35 (5,2)	,002	,990	
	5	,04 (,58)	-,310	,154	

Dep. Variable	Nª.	Mean (SD)	Deviation Contrast (B)	P-value
Waste reaching TPS	1	9,5 (10,27)	-,982	,031
	2	12,8 (9,3)	2,392	<.001
Flow: F12, F17 Mean:10,76 (SD:9,97)	3	8,0 (9,68)	-2,434	<.001
	4	11,57 (9,68)	1,087	,037
	5	10,42 (9,97)	-,062	,918
Uncollected waste	1	1,9 (2,1)	-,201	,031
	2	2,6 (1,9)	,489	<.001
Flow: F15 Mean: 2,2 (SD: 2,04)	3	1,6 (1,9)	-,498	<.001
	4	2,3 (1,9)	,223	,037
	5	2,1 (2)	-,013	,917

Importance of Spatial MFA

Differences across neighborhoods

Dep. Variable	Education		Income		Local segregation programme	
Consumption	P-value	В	P-value	В	P-value	В
	,238	,535	<.001	$9,457 \times 10^{-7}$,606	-,353
Segregation	P-value	В	P-value	В	P-value	В
	,002	1,171	,034	$2,569 \times 10^{-7}$	<.001	3,731
Burning	p-value	В	P-value	В	P-value	В
	,408	,114	,015	$1,079 \times 10^{-7}$,243	,241
Waste reaching TPS	P-value	B:	P-value	В	P-value	В
	,104	-,618	<.001	$4,847 \times 10^{-7}$	<.001	-3,615

Introduction

Methodology

Results

Discussion

Conclusion: Neighbourhood difference matter

This research demonstrates the feasibility of constructing an MFA in data-limited environments, offering quantitative and qualitative insights into waste consumption and disposal patterns

This **bottom-up**, **geo-referenced methodology** provides **insights** that are not captured by conventional statistical offices or top-down material flow analyses

Next week → sociodemographic and governance in urban metabolism

 Laboratory on Human-Environment Relations in Urban Systems

Thank you!

giulia.frigo@epfl.ch

Supervisor:

Dr Claudia Binder (HERUS, EPFL)

Co-supervisor:

Dr Christian Zurbrügg (EAWAG, ETH Zurich)

Funded by

This project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 945363

